Dynamic propensity in a kinetically constrained lattice gas
نویسنده
چکیده
We apply the concept of dynamic propensity to a simple kinetically constrained model of glass formers, the two-vacancy assisted triangular lattice gas, or (2)-TLG. We find that the propensity field, defined in our case as the local rootmean square displacement averaged over the ensemble of trajectories with identical initial configurations, is a good measure of dynamical heterogeneity. This suggests a configurational origin for spatial fluctuations of the dynamics, but just as in the case of atomistic systems, we find that propensity is not correlated to any simple structural property. We show instead that certain extended clusters of particles connected to vacancies correlate well with propensity, indicating that these are the fundamental excitations of the (2)-TLG. We also discuss time-correlations and the correlation between configurations within the propensity ensemble.
منابع مشابه
Rotational correlation and dynamic heterogeneity in a kinetically constrained lattice gas.
We study the dynamical heterogeneity and glassy dynamics in a kinetically constrained lattice-gas model which has both translational and rotational degrees of freedom. We find that the rotational relaxation time tracks the structural relaxation time as density is increased whereas the translational diffusion constant exhibits a strong decoupling. We investigate distributions of exchange and per...
متن کاملBulk diffusion in a kinetically constrained lattice gas
In the hydrodynamic regime, the evolution of a stochastic lattice gas with symmetric hopping rules is described by a diffusion equation with densitydependent diffusion coefficient encapsulating all microscopic details of the dynamics. This diffusion coefficient is, in principle, determined by a Green– Kubo formula. In practice, even when the equilibrium properties of a lattice gas are analytica...
متن کاملBulk diffusion in a kinetically constrained lattice gas
In the hydrodynamic regime, the evolution of a stochastic lattice gas with symmetric hopping rules is described by a diffusion equation with densitydependent diffusion coefficient encapsulating all microscopic details of the dynamics. This diffusion coefficient is, in principle, determined by a Green– Kubo formula. In practice, even when the equilibrium properties of a lattice gas are analytica...
متن کاملBulk diffusion in a kinetically constrained lattice gas
In the hydrodynamic regime, the evolution of a stochastic lattice gas with symmetric hopping rules is described by a diffusion equation with densitydependent diffusion coefficient encapsulating all microscopic details of the dynamics. This diffusion coefficient is, in principle, determined by a Green– Kubo formula. In practice, even when the equilibrium properties of a lattice gas are analytica...
متن کاملBulk diffusion in a kinetically constrained lattice gas
In the hydrodynamic regime, the evolution of a stochastic lattice gas with symmetric hopping rules is described by a diffusion equation with densitydependent diffusion coefficient encapsulating all microscopic details of the dynamics. This diffusion coefficient is, in principle, determined by a Green– Kubo formula. In practice, even when the equilibrium properties of a lattice gas are analytica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006